Physics - Oscillations, Waves and Sound - Forced Oscillations

Forced Oscillations - Differential equation for forced oscillations,Resonance,Velocity, Average energy, Quality factor: Link1

Forced Oscillations MCQ & Answers

       Are you worried about the answers to Oscillations, Waves and Sound - Forced Oscillations - Differential equation for forced oscillations,Resonance,Velocity, Average energy, Quality factor questions? We have arranged the Show Answer button under the each question. Candidates can click on it to know the right option among the given alternatives. Furthermore, the applicants can check our web portal @ www.totalmcq.com to take part in more MCQ on various subject. Wish, the given information about the Forced Oscillations MCQ will helpful to the advance and can learn the various types of questions and answers.


Q.1. Amplitude A of forced oscillations

 m\:\frac{d^2x}{dt^2} +  R\:\frac{dx}{dt} + kx = fo \:\:\:sin\: qt\: is\: given\: as ----

 A. \:\:\:\:\:\: A=\frac{fo}{\sqrt(k-mq^2)^2 - R^2q^2}



 B. \:\:\:\:\:\: A=\frac{fo}{\sqrt(k-mq)^2 - R^2q^2}




 C. \:\:\:\:\:\: A=\frac{fo}{\sqrt(k-mq^2)^2 - Rq^2}



 D. \:\:\:\:\:\: A=\frac{fo}{\sqrt(k-mq^2)^2 - R^2q}




Q.2. The phase of oscillations

 m\:\frac{d^2x}{dt^2} +  R\:\frac{dx}{dt} + kx = fo \:\:\:sin\: qt\: is\: given\: as ----

 A. \:\: tan\: \phi = \frac{Rq}{k-mq^2}



 B. \:\: sin\: \phi = \frac{Rq}{k-mq^2}



 C. \:\: cos\: \phi = \frac{Rq}{k-mq^2}



 D. \:\: tan\: \phi = \frac{R^2q^2}{k-mq^2}



Q.3. Which of the following differential equation represents forced oscillatory motion?

 A.\:\:\: m\:\frac{d^2x}{dt^2} +\:\: kx = 0



 B.\:\:\: m\:\frac{d^2x}{dt^2} + R\frac{dx}{dt}+\:\: kx = fo\:\: sin\:\: qt\:\:



 C.\:\:\: m\:\frac{d^2x}{dt^2} + R\frac{dx}{dt}-\:\: kx = 0\:



 D.\:\:\: m\:\frac{d^2x}{dt^2} - R\frac{dx}{dt}-\:\: kx = 0\:



Q.4. Natural frequency of free oscillations

 \:\:\: m\:\frac{d^2x}{dt^2} + R\frac{dx}{dt}+\:\: kx = fo\:\:sin\:\:qt\:\:is\:----

 A.\:\:\: \omega = \sqrt {mk}



 B.\:\:\: \omega = \sqrt {\frac{1}{km}



 C.\:\:\: \omega = \sqrt {\frac{m}{k}



 D.\:\:\: \omega = \sqrt {\frac{k}{m}





Q.5. Maximum amplitude of resonance at amplitude resonance in forced oscillation is -------.

 A.\:\:\: \frac{fo\:\omega}{R}




 B.\:\:\: \frac{fo\:}{\omega R}




 C.\:\:\: \frac{foR\:}{\omega }




 D.\:\:\: \frac{fo\: m\:}{\omega R }




Q.6. Resonance takes place when naural angular frequency of oscillations ω is ------- angular frequency of driving force q in forced oscillation

 \:\:\: m\:\frac{d^2x}{dt^2} + R\frac{dx}{dt}+\:\: kx = fo\:\: sin\:\: qt\:.



A. less than
B. greater than
C. equal to
D. less or greater than

Q.7. Maximum amplitude of velocity of resonance at velocity resonance in forced oscillation is ------.

 A.\: \:\frac{fo}{R}



 B.\: \:\frac{fo}{2R}



 C.\: \:\frac{foR}{2}



 D.\: \:\frac{fo}{\omega R}



Q.8. Half width Δω of the resonance for

 \:\:\: m\:\frac{d^2x}{dt^2} + R\frac{dx}{dt}+\:\: kx = fo\:\: sin\:\: qt\:\:is ----



 A.\: \:\frac{R}{m}




 B.\: \:\frac{R}{2m}



 C.\: \:\frac{R}{4m}




 D.\: \:\frac{R}{8m}



Q.9. At velocity resonance, phase difference between displacement and applied force is -------.

   A. π

 B.\: \:\frac{\pi}{4}



 C.\: \:\frac{\pi}{2}



   D. 2π

Q.10. Bandwidth of power resonance q is the difference in angular frequencies of applied force for which power falls from

 \bar Pmax \: \: to\:\: \frac{1}{2}\bar Pmax \:\: is \:\:given \:\:as\:-----




 A.\: \:\frac{R}{m}



 B.\: \:\frac{R}{2m}



 C.\: \:\frac{R}{4m}



 D.\: \:\frac{R}{8m}